EVERY L_1 -PREDUAL IS COMPLEMENTED IN A SIMPLEX SPACE

BY

WOLFGANG LUSKY

Fachbereich 17, Universität-Gesamthochschule, Warburger Straße 100, D-4700 Paderborn, West Germany

ABSTRACT

We show that every L_1 -predual space is complemented in a simplex space. This answers a question raised by Lazar and Lindenstrauss.

1. Introduction

This paper is concerned with the question how general L_1 -predual spaces are interrelated with simplex spaces. By a simplex S we always mean a compact Choquet simplex; the corresponding simplex space is defined to be

$$A(S) = \{ f: S \rightarrow \mathbb{R} : f \text{ affine and continuous} \}.$$

(For simplicity, we assume all Banach spaces to be real.) It is well known that for any separable L_1 -predual space X there is a separable simplex space $A(S) \supset X$ and a contractive projection $P: A(S) \to X$ [5]. Lazar and Lindenstrauss posed the question whether this remains true without the assumption of separability.

We give a positive answer to this question. Furthermore, we investigate the geometric relationship between such a simplex and the corresponding dual unit ball $B(X^*)$ of the given L_1 -predual space.

There are in fact many similarities between the convexity theory of simplices and L_1 -unit balls $B(X^*)$ endowed with the w^* -topology. For example, both admit versions of Michael's selection theorem and versions of Edward's separation theorem (compare [3, Theorem 3.1] with [5, Theorem 2.2] and

[1, 7.6 Theorem] with [5, Theorem 2.1]). This suggests that $B(X^*)$ is always the 'odd' part of a simplex.

For a Banach space Z let $\Sigma: Z \rightarrow Z$ be an isometric, involutive linear map (called *involution*). Put

odd
$$z = \frac{1}{2}(z - \Sigma(z))$$
 and even $z = \frac{1}{2}(z + \Sigma(z))$ for any $z \in Z$.

Then odd and even are contractive projections onto Odd $Z = \{ \text{odd } z : z \in Z \}$ and Even $Z = \{ \text{even } z : z \in Z \}$, resp. Furthermore we have

$$Z = \text{Odd } Z \oplus \text{Even } Z$$
.

By B(Z) we mean the closed unit ball of Z, ex B(Z) are the extreme points of B(Z) and $\partial B(Z)$ are the elements of norm one in Z.

We obtain

THEOREM. Let X be an L_1 -predual space. Then there is a simplex space $Y \supset X$ and an isometric involutive map $\Sigma : Y \to Y$ such that X = Odd Y and $\Sigma(e) = e$ where e is the one-function in Y.

COROLLARY I. Let X be an L_1 -predual such that $X^* = l_1$. Then the simplex space Y of the theorem can be taken to satisfy $Y^* = l_1$, too

COROLLARY II. Every L_1 -predual space X is 1-complemented in a simplex space A(S). A(S) can be taken to have the same density character as X.

COROLLARY III. Let B be the unit ball of a conjugate L_1 -space (endowed with the w*-topology). Then there is a simplex S and a surjective continuous affine map $q: S \to B$ satisfying the following:

- (i) $q(ex S) = ex B \cup \{0\} \text{ and } q^{-1}(ex B) \subset ex S$,
- (ii) $q_{lex S}$ is injective,
- (iii) ex $S \setminus q^{-1}(ex B)$ is a singleton.

In the finite dimensional case one can even replace ex $B \cup \{0\}$ by ex B in (i) of the preceding corollary. For example, one can place a tetrahedron S over a rhombus B such that the orthogonal projection $q: \mathbb{R}^3 \to \mathbb{R}^2$ maps S onto B and ex S bijectively onto ex B.

A slightly more restrictive version of the separable case of the theorem was proven, by different methods, in [8]. We postpone the proofs to Section 3. Here we recall some basic facts concerning simplex spaces [5]. It is well known that an L_1 -predual space X is a simplex space if and only if $\exp(X) \neq \emptyset$. In this case the L_1 -order of X^* is the dual order with respect to the pointwise order of

the affine functions in X. Moreover, the positive cone of X^* , X_+^* , is then w^* -closed and the positive cap $S = X_+^* \cap B(X^*)$ is a simplex. We have $\exp S \subset (\exp B(X^*) \cap X_+^*) \cup \{0\}$. (For general L_1 -predual spaces X_+^* is not w^* -closed.)

Finally, we recall that an L_1 -predual X which is the dual of another Banach space Y is always a C(K)-space where $C(K) = \{ f: K \to \mathbb{R} : f \text{ continuous} \}$, K a compact Hausdorff space. Moreover, in this case, whenever $T: A \to X$ is a linear bounded operator on some Banach space A and $B \supset A$, there is a norm preserving extension $\tilde{T}: B \to X$ of T [6].

2. L_1 -spaces with involutions

In the following we consider an L_1 -space V such that there is a subspace V_0 with $V = (V_0 \oplus V_0)_{(1)}$. We put $\Sigma(x, y) = (y, x)$ for all $x, y \in V_0$. Then V_0 is an L_1 -space, too. Let the order in V be defined by $(x, y) \ge 0$ iff $x \ge 0$ and $y \ge 0$ (with respect to the L_1 -order in V_0). We obtain that

Odd
$$V = \{(x, -x) : x \in V_0\},$$
 Even $V = \{(x, x) : x \in V_0\}.$

The first three of the following lemmas are similar to some results of [2] which were stated and proven in a different context. To make the paper self-contained we include complete proofs.

2.1. LEMMA. If $v, w \in V$ are positive such that $||v|| = ||w|| = ||\operatorname{odd} v||$ and $\operatorname{odd} v = \operatorname{odd} w$, then v = w.

PROOF. There are $x, y, z, u \ge 0$ such that v = (x, y), w = (z, u). By assumption (x - y, y - x) = (z - u, u - z). We obtain x + u = y + z. Since all elements involved are positive and V_0 is lattice ordered there are $s_{i,j} \ge 0$ such that

$$x = s_{1,1} + s_{1,2},$$
 $y = s_{1,1} + s_{2,1},$
 $u = s_{2,1} + s_{2,2},$ $z = s_{1,2} + s_{2,2}.$

This implies, in view of the fact that the norm on the positive cone is additive,

$$||v|| = ||x|| + ||y|| = 2 ||s_{1,1}|| + ||s_{1,2}|| + ||s_{2,1}||.$$

By assumption this is equal to

$$\| \operatorname{odd} v \| = \| x - y \| = \| s_{1,2} - s_{2,1} \|.$$

The triangle inequality yields $s_{1,1} = 0$. Similarly we obtain $s_{2,2} = 0$. Hence x = z, y = u. This proves Lemma 2.1.

- 2.2. LEMMA. (a) If $w \in \text{Odd } V$ then there is a positive $v \in V$ with odd v = w and ||w|| = ||v||.
 - (b) V is spanned by the positive elements v such that $||v|| = ||\operatorname{odd} v||$.

PROOF. (a) Put w = (x, -x), where $x \in V_0$. Then take $v = 2(x_+, x_-)$. v is positive and we obtain

$$||v|| = 2 ||x_{+}|| + 2 ||x_{-}|| = 2 ||x|| = ||w||$$

and odd $v = (x_+ - x_-, x_- - x_+) = w$.

(b) Consider an arbitrary element $(x, y) \in V$. Then

$$(x, y) = (x_+, 0) + (0, y_+) - (x_-, 0) - (0, y_-).$$

Each element v of the form v=(z,0) or v=(0,z), z positive, satisfies ||v||= $||\operatorname{odd} v||$ (since $\operatorname{odd}(z,0)=\frac{1}{2}(z,-z)$, $\operatorname{odd}(0,z)=\frac{1}{2}(-z,z)$).

By Lemmas 2.1, 2.2 we can define a map ρ : Odd $V \to V$ as follows. For a given $v \in \text{Odd } V$ let $\rho(v)$ be the unique positive element of V such that odd $\rho(v) = v$ and $\| \rho(v) \| = \| v \|$. It is easily seen that odd $\circ \rho = \text{id}_{\text{Odd } V}$ and that ρ is affine on each face of the unit ball of Odd V.

2.3. LEMMA. For any positive $v \in V$ there is a positive $w \in Even V$ such that

$$v = \rho(\text{odd } v) + w.$$

PROOF. Let v = (x, y), where $x, y \ge 0$, and put z = x - y. Then odd $v = \frac{1}{2}(z, -z)$. Clearly $x \ge z$. Hence $x \ge z_+$. Similarly, $y \ge z_-$. Put $w = (x - z_+, y - z_-)$. Then w is positive. We have

odd
$$w = \frac{1}{2}(x - y - (z_{+} - z_{-}), y - x + (z_{+} - z_{-})) = 0.$$

Hence $w \in \text{Even } V$. Finally, we have $\rho(\text{odd } v) = (z_+, z_-)$. This implies $v = \rho(\text{odd } v) + w$.

Now we consider V^* . Since $V = (V_0 \oplus V_0)_{(1)}$, we have $V^* = (V_0^* \oplus V_0^*)_{(\infty)}$. Let Σ^* be the adjoint of Σ . Then $\Sigma^*(x^*, y^*) = (y^*, x^*)$ and Σ^* is an isometric involution on V^* .

In view of our remarks at the end of Section 1, V_0^* , V^* are C(K)-spaces which have the Hahn-Banach property since V_0 , V are L_1 -spaces. The order of the C(K)-space coincides with the dual order of V. Let e_0 be the one-function in the C(K)-space V_0^* . Then $e := (e_0, e_0)$ is the one-function in the C(K)-space

 V^* . We obtain $\Sigma^*(e) = e$. Note, e corresponds to the functional in V^* which is one on $\{v \in V : ||v|| = 1, v \ge 0\}$.

For any $\lambda \in \mathbb{R}$ and $v^* = (x^*, -x^*) \in \text{Odd } V^*$ we obtain

$$\|\lambda e + v^*\| = \max(\|\lambda e_0 + x^*\|, \|\lambda e_0 - x^*\|) = |\lambda| + \|x^*\|$$

$$= |\lambda| + \|v^*\|.$$

Here we have

$$(\text{Odd } V)^* \cong \text{Odd}(V^*) = \{(x^*, -x^*) : x^* \in V_0^*\}.$$

That is, the restriction map $v^* \mapsto v^*_{|Odd V|}$ is an isometry from $Odd(V^*)$ onto $(Odd V)^*$. So we can identify $(Odd V)^*$ with $Odd(V^*)$.

In the following lemma we consider an L_1 -subspace $U_0 \subset V_0$ and put $U = (U_0 \oplus U_0)_{(1)}$. Hence

$$U \subset V$$
, $\Sigma(U) = U$, Odd $U \subset$ Odd V .

We assume that U_0 is positively embedded in V_0 . That is, if $u \in U_0$ is positive with respect to the L_1 -order in U_0 it is positive with respect to the L_1 -order in V_0 .

As before we define $(u_1, u_2) \ge 0$ in U iff $u_1 \ge 0$, $u_2 \ge 0$ in U_0 . An operator $T: V \to U$ is called *positive* if $Tv \ge 0$ whenever $v \ge 0$ with respect to the corresponding orders.

2.4. Lemma. Let $P: \text{Odd } V \to \text{Odd } U$ be a contractive projection. Then there is a positive contractive projection $\hat{P}: V \to U$ such that

$$\hat{P}_{iOdd\ V} = P$$
 and $\hat{P} \circ \Sigma = \Sigma \circ \hat{P}$.

PROOF. Consider the adjoint map P^* : Odd $U^* o$ Odd V^* . Let e_U , e_V be the one-functions of U^* and V^* , resp. From the remarks preceding Lemma 2.4 we infer that

$$\operatorname{span}(\{e_U\} \cup \operatorname{Odd} U^*) = (\mathbf{R}\{e_U\} \oplus \operatorname{Odd} U^*)_{(1)},$$

$$\operatorname{span}(\{e_V\} \cup \operatorname{Odd} V^*) = (\mathbf{R}\{e_V\} \oplus \operatorname{Odd} V^*)_{(1)}.$$

Put $Q_1(\lambda e_U + u^*) = \lambda e_V + P^*u^*$, where $u^* \in \text{Odd } U^*$. Then Q_1 is contractive and $\Sigma^* \circ Q_1 = Q_1 \circ \Sigma^*$. V^* has the Hahn-Banach property, that is, Q_1 has a contractive extension $Q_2: U^* \to V^*$. We can assume without loss of generality that $Q_2 \circ \Sigma^* = \Sigma^* \circ Q_2$. (Otherwise take $\frac{1}{2}(Q_2 + \Sigma^* \circ Q_2 \circ \Sigma^*)$ instead of Q_2 .)

Then $||Q_2|| = 1$ and $Q_2e_U = e_V$. This implies that Q_2 is positive with respect to the dual orders.

The adjoint Q_2^* maps V^{**} into U^{**} . Regard V and U as subspaces of V^{**} and U^{**} , resp., in the usual way. This means

$$U_0 \subset U_0^{**}, \quad V_0 \subset V_0^{**}$$
 and

$$U^{**} = (U_0^{**} \oplus U_0^{**})_{(1)}, \quad V^{**} = (V_0^{**} \oplus V_0^{**})_{(1)}.$$

We have

$$\Sigma^{**}Q_2^* = Q_2^*\Sigma^{**}.$$

All Banach spaces involved are L_1 -spaces. It is well known that there is a positive contractive projection $R_0: U_0^{**} \to U_0$. (This follows e.g. from [7; Proposition 1.a.2 and Lemma 1.b.9].)

Let $R: U^{**} \rightarrow U$ be defined by

$$R(x^{**}, y^{**}) = (R_0 x^{**}, R_0 y^{**}).$$

Then R is a positive contractive projection from U^{**} onto U and we have $\Sigma R = R\Sigma^{**}$. Put $\hat{P} = (RQ_2^*)_{|V}$. Then \hat{P} is positive, contractive and extends P. Furthermore $\Sigma \hat{P} = \hat{P}\Sigma$.

It remains to show that \hat{P} is a projection onto U. To this end consider $u \in U$ such that $u \ge 0$ and ||u|| = || odd u ||. Here u is positive with respect to U. Since, by assumption, U is positively embedded in V, u is also positive with respect to V. We have

$$\hat{P}(\text{odd } u) = P(\text{odd } u) = \text{odd } u.$$

Since odd($\hat{P}u$) = \hat{P} (odd u) and \hat{P} is positive we obtain, by Lemma 2.1, that $\hat{P}u = u$. By Lemma 2.2, $\hat{P}_{|U} = \mathrm{id}_{U}$.

On the other hand, by definition, $\hat{P}V \subset U$. This proves that \hat{P} is a projection onto U.

3. Proof of the Theorem and the Corollaries

3.1. Proof of the Theorem. Put

$$V_0 = X^{***}, \quad V = (V_0 \oplus V_0)_{(1)} \quad \text{and} \quad U_0 = X^*, \quad U = (U_0 \oplus U_0)_{(1)};$$

 X^{***} and X^* are L_1 -spaces. Here X^* is regarded as a subspace of X^{***} in the usual way. Hence U is a subspace of V. Since X^{***} and X^* are L_1 -spaces, U_0 is positively embedded in V_0 .

Let $P_0: X^{***} \rightarrow X^*$ be the canonical projection, that is

$$(P_0 x^{***})(x) = x^{***}(x)$$
 for all $x \in X$ and $x^{***} \in X^{***}$.

Put $P(x^{***}, y^{***}) = (P_0 x^{***}, P_0 y^{***}).$

Apply Lemma 2.4 to obtain a contractive positive extension $\hat{P}: V \to U$ of $P_{|Odd\ V}$ such that \hat{P} is a projection onto U. Note that $P_{|Odd\ V}$ is the canonical projection since Odd $V = \tilde{X}^{****}$ and Odd $U = \tilde{X}^{*}$ where

$$\tilde{X} = \{(x, -x) \in (X \oplus X)_{(\infty)} : x \in X\};$$

 \tilde{X} is isometrically isomorphic to X and \tilde{X}^* is embedded in \tilde{X}^{***} in the usual way.

But \hat{P} is not necessarily the canonical projection from $(X \oplus X)_{(\infty)}^{***}$ onto $(X \oplus X)_{(\infty)}^{*}$. (The canonical projection would not be positive in general.)

Let V_+ and U_+ be the positive cones of V and U, resp. Then $U_+ \subset V_+$ since U is a sublattice of V [7; Proposition 1.a.2]. Hence $\hat{P}(V_+) = U_+$. V_+ is closed with respect to $\sigma(V, (X^{**} \oplus X^{**})_{(\infty)})$ since $(X^{**} \oplus X^{**})_{(\infty)}$ is a C(K)-space, hence a simplex space. But U_+ is not necessarily closed with respect to $\sigma(U, (X \oplus X)_{(\infty)})$.

We define another w^* -topology on U under which U_+ is closed. Consider on V the topology $\sigma(V, (X^{**} \oplus X^{**})_{(\infty)})$ and let τ be the finest locally convex topology on U such that \hat{P} is continuous. Then the absolutely convex subsets $O \subset U$ such that $\hat{P}^{-1}(O)$ are zero neighbourhoods with respect to $\sigma(V, (X^{**} \oplus X^{**})_{(\infty)})$ form a zero neighbourhood base with respect to τ . τ is Hausdorff since \hat{P} is a projection onto U.

Since $\hat{P} \circ \Sigma = \Sigma \circ \hat{P}$ and $\hat{P} \circ \Sigma$ is continuous, we obtain that $\Sigma : U \to U$ is continuous with respect to τ . Hence odd : $U \to U$ is continuous with respect to τ . Define

$$S=U_+\cap B(U).$$

Since \hat{P} is continuous, $V_+ \cap B(V)$ is $\sigma(V, (X^{**} \oplus X^{**}))_{(\infty)}$ -compact and $\hat{P}(V_+ \cap B(V)) = S$, we obtain that S is τ -compact. Hence S is a Choquet simplex as cap of the positive cone of an L_1 -space.

We claim that τ and $\sigma(\text{Odd } U, \tilde{X})$ coincide on B(Odd U). In this case we find an isometric embedding $T: X \to A(S)$, namely

$$(Tx)(u) = (\operatorname{odd} u)(x, -x),$$

if $x \in X$, $u \in S \subset U = (X^* \oplus X^*)_{(1)}$. As a consequence of Lemma 2.2(a) we obtain that

$$Odd(S) = B(Odd U).$$

This shows T is an isometry.

Furthermore we can define

$$(\bar{\Sigma} f)(s) = f(\Sigma s)$$

where $f \in A(S)$, $s \in S$. Then $\bar{\Sigma}$ is an isometric involution on A(S) with $\bar{\Sigma}(1_s) = 1_s$.

If $f \in A(S)$ is such that f(0) = 0 then f has a unique τ -continuous extension \hat{f} to an affine function on B(U) with $\hat{f}(-u) = -\hat{f}(u)$. (In fact, if

$$u = \lambda s_1 - (1 - \lambda)s_2$$
, $s_1, s_2 \in S$, $0 \le \lambda \le 1$,

then $\hat{f}(u) = \lambda f(s_1) - (1 - \lambda) f(s_2)$.) Provided the claim is true, odd \hat{f} (with respect to $\hat{\Sigma}$) is $\sigma(\text{Odd } U, \hat{X})$ -continuous on B(Odd U). Hence it corresponds to an element in X. If $x^* \in B(X^*)$ let $s(x^*) \in S$ be the unique element with

odd
$$s(x^*) = \frac{1}{2}(x^*, -x^*)$$
 and $||s(x^*)|| = ||x^*||$.

For $f \in A(S)$ put

$$x^*(Rf) = \frac{1}{2}f(s(x^*)) - \frac{1}{2}f(\Sigma(s(x^*))) = (\text{odd } \hat{f})(\text{odd } s(x^*)).$$

Then $R: A(S) \to X$ is contractive and $RT = \mathrm{id}_X$. Hence Q:= TR is a contractive projection onto TX and $TX = \mathrm{Odd}\,A(S)$ (with respect to Σ).

It remains to prove the claim. To this end, recall odd is τ -continuous and we have $\Sigma(B(U)) = B(U)$. Moreover

$$\operatorname{odd} \circ \hat{P} = P \circ \operatorname{odd}, \qquad \bigvee_{\text{odd}} \operatorname{odd} \qquad \bigvee_{\text{odd}} \operatorname{odd}$$

$$B(\operatorname{Odd} V) \xrightarrow{P} B(\operatorname{Odd} U)$$

This shows that odd is continuous with respect to τ on U and $\sigma(\text{Odd }U,\tilde{X})$ on Odd U.

Since $B(U) = \hat{P}(B(V))$ is τ -compact we obtain that B(Odd U) is τ -compact. Because odd and \hat{P} restricted to Odd U are the identity, we conclude that the restriction of τ to B(Odd U) is finer than $\sigma(\text{Odd } U, \hat{X})$. Hence both topologies coincide on B(Odd U). This proves the claim and concludes the proof of the theorem.

3.2. PROOF OF COROLLARY III. We retain the notation of 3.1. For $s \in S$ and $x \in X$ put

$$(qs)(x) = (\text{odd } s)(x, -x).$$

Then $q: S \to B(X^*)$ is affine, continuous (with respect to $\sigma(X^*, X)$ on $B(X^*)$). q is onto since Odd $S = B(\text{Odd } U) \cong B(X^*)$. If $x^* \in \text{ex } B(X^*)$ then

$$F := \{ s \in S : q(s) = x^* \}$$

is a closed face of S. This implies ex $F \subset (ex S) \setminus \{0\}$. All $s \in F$ satisfy

odd
$$s = \frac{1}{2}(x^*, -x^*)$$
 and $1 = ||s|| = ||x^*||$.

By Lemma 2.1, s is unique. This proves $q^{-1}(\operatorname{ex} B(X^*)) \subset \operatorname{ex} S$ and shows that q is injective on $q^{-1}(\operatorname{ex} B(X^*))$.

Finally we have q(0) = 0. If $s \in (ex S) \setminus \{0\}$ then $s \in B(U)$. Hence, by Lemma 2.3, $s = \rho(\text{odd } s) + w$ for some positive $w \in \text{Even } U$. We obtain

$$1 = ||s|| = ||\rho(\text{odd } s)|| + ||w||$$

since all elements are positive elements of an L_1 -space. This shows that $w \in S = U_+ \cap B(U)$. Since s is an extreme point of B(U) we obtain s = w or $s = \rho(\text{odd } s)$. If s were even we would have $s = \frac{1}{2}(x^*, x^*)$ for some $x^* \in \partial B(X^*)$. Since $s \ge 0$ we would obtain

$$x^* \ge 0$$
 and $s = \frac{1}{2}(x^*, 0) + \frac{1}{2}(0, x^*)$.

This would contradict $s \in ex B(X)$. Hence $s = \rho(odd s)$.

By definition, odd $s = \frac{1}{2}(q(s), -q(s))$. If, for some $0 < \lambda < 1$ and $y^*, z^* \in B(X^*)$, $q(s) = \lambda y^* + (1 - \lambda)z^*$, then

$$s' := \lambda \rho(\frac{1}{2}(y^*, -y^*)) + (1 - \lambda)\rho(\frac{1}{2}(z^*, -z^*))$$

is such that odd s' = odd s. Lemma 2.1 again shows s' = s. We conclude

$$\rho(\frac{1}{2}(y^*, -y^*)) = s$$
 or $\rho(\frac{1}{2}(z^*, -z^*)) = s$.

This implies

$$q(s) = v^* = q(\rho(\frac{1}{2}(v^*, -v^*)))$$
 or $q(s) = z^* = q(\rho(\frac{1}{2}(z^*, -z^*))).$

Hence $q(s) \in ex B(X^*)$. This shows

$$q(\operatorname{ex} S) = \operatorname{ex} B(X^*) \cup \{0\}.$$

Thus q is injective on ex S and

$$\operatorname{ex} S = q^{-1}(\operatorname{ex} B(X^*)) \cup \{0\}.$$

3.3. PROOF OF COROLLARY I. If $X^* \cong l_1$ then ex $B(X^*)$ is countable. By Corollary III, ex S is countable. Hence $A(S)^* \cong l_1$.

3.4. PROOF OF COROLLARY II. We use the notation of the theorem. Let Q = odd. Then $Q: Y \to X$ is a contractive projection. Put $W = \text{span}(\{e\} \cup X)$. Then, by [6], there is an L_1 -predual $W \subset Z \subset Y$ with the same density character as X. Since $e \in Z$ we obtain $\exp(Z) \neq \emptyset$. Hence Z is a simplex space and $Q_{|Z|}$ is a contractive projection onto X.

ACKNOWLEDGEMENT

Portions of this paper were written while the author stayed at the Sektion Mathematik, Friedrich-Schiller-Universität Jena, to whom the author expresses his gratitude for their kind hospitality.

REFERENCES

- 1. L. Asimov and A. J. Ellis, Convexity Theory and its Applications in Functional Analysis, Academic Press, 1980.
 - 2. E. G. Effros, On a class of real Banach spaces, Isr. J. Math. 9 (1971), 430-458.
- 3. A. J. Lazar, Spaces of affine continuous funtions on simplexes, Trans. Am. Math. Soc. 134 (1968), 503-525.
- 4. A. J. Lazar, On Lindenstrauss spaces, Proceedings of the Conference on Split Faces, Facial Structures of Compact Convex Sets and Applications, NATO Advanced Studies Institute, University College of Swansea, 1972, pp. 68-72.
- 5. A. J. Lazar and J. Lindenstrauss, Banach spaces whose duals are L_1 -spaces and their representing matrices, Acta Math. 126 (1971), 165-194.
- 6. J. Lindenstrauss, Extensions of compact operators, Memoirs Am. Math. Soc. No. 48 (1964).
 - 7. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, 1979.
- 8. W. Lusky, On simplex spaces with involutions, Proceedings of the Conference on Functional Analysis/Banach Space Geometry, Vorlesungen aus dem Fachbereich Mathematik der Universität Essen, Heft 10, 1983, pp. 309-317.